((% JSSN(Online) 1119-8751

RSET ISSN (Print) L7670

Intern ' Innovative Research in Science,

o ing and Technology

¢ Factor, Monthly, Peer Reviewed Journal)

visit: Www.ijirset.coim

Vol. 7, 1ssue 2, February 2018

Development of Special F unctions in
Mathematical Physics

Bhagvat K. Kumthekar', Vijay B. Patare’

Department of Physics, Nutan Mahavidyalaya, Sailu Dist Parbhani, India’

Department of Mathematics, Nutan Mahavidyalaya, Sailu Dist Parbhant, India’

nents in mathematical

ABSTRACT: In the present paper, | would like to explain special functions and therr develop
These functions arc

physics. Such asBessel cquation, Legendre cquation, Laguerre equationand Hermite cquation.
developed only for special cases of equations. So that the names where given special functions.

I. INTRODUCTION

cial cases in Physics. In

h are developed duc to requirement of spe
partial

blems which arc in terms of differential cquations or
dependent variables. When a function / 1s
artable 1s known as partial

There are some special functions in mathematics whic

science and technology there are large number pro
differential cquations. Partial differential equations have two ormore in
depending upon number of variables (x.y,z0)then differentiation with respect 1o one of the v

o . af af af df .. R _ .
differentiation e.g. == =%, 2% 3 If our function is depend upon only one variable and we differentiate with respect to

dx
erful ool for solving a partial differential equation may be to split it into (ordinary

that variable it becomes perfect differentiation
A pow ) difterentialequations by the
method of the separation of variables.

A relation between independent vanable, say X, dependent variable, sayy, and derivatives of’y with respect 1o x 18

known as a diftferential equation.

[(x'y'dr'dxz’""dx")—[] (1)

en differential equation is the order of the highestderivative in the equation.Degree of the given

Order of the giv
derivative in the equation [1].Differential equations may be

differential equation is the degree (power) ofthe highest
classified IN1O IWO calegories:

(1) Lincar differential equations, and
(1) Non-linear differential equations.
dlly dll-ly d}’
a, T n T Quu Tan-1 4 o 4 ﬂ_l *‘T; + a,y = f(l') (2)

where a's may be functions ol x0r cpnstant, but'not the function of v. Here, cach term contains either v o
» [ .
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cquation (2) are nonlinear ones. Thus, in a non-lincar differential equation, at |cast one term cont

- . .= than onc¢.
and ts deriy ative, Pl‘Oduct of two or more derivatives, or has y or 1ts derivative ol degrcc mote than

linear combination of the solutions

If y1, v, ..., y» are r solutions of a homogeneous linear differential equationthen 2 .
about Bessel equation,

also is a solution of the equation[3].In the present communication | would like
Legendre equation, Laguerre equation and Hermite equation.

1. Legendre Equation: .
Legendre differential equation is,

o discuss

2 | -
(1—x2)%1—2x91+?1(11+1)y=0 ()

dx? (x
Where n is positive integer. Solution of this equation 1s known as Legendre Function[4]. In

points and possibility of the series solution for this cquation, we have
2 -1
P(x)= — — and Q(x) = ot

1—-x? 1-x?
Such type of equation comes in Schrodinger’s cquation for Hydrogen atom in spheric

order to find out singular

al polar coordinate [5].

Applications of Legendre functions

Legendre’s equation occurs in many areas of applied mathematics, physics and chemistry in physical situation with a
spherical geometry such as flow of an ideal fluid past a sphere, the determination of the electric ficld due to a charged
sphere and the determination of the temperature distribution in a sphere given its influe

an extensive usage area, particularly in physics and engineering. For example, Legendre and Associate Levendre

nce. Legendre polynomials have

polynomials are widely used in the determination of wave functions of clectrons i the orbits of an atom. [3] and in the
determination of potential functions in the spherically symmetric geometryctc. Also in nuclear reactor physics,

lLeo

gendre polynomials have an extraordinary importance [0].
2.  Laguerre equation:
Laguerre’s differential equation 1s
d%y dy

x—+ (1 - I)ﬁ+ ny =0... (4

(dx*

Where n is positive integer. Solution of this equation is known as Laguerre Function [4]. Tn order o tind out singular
points and possibihity of the series solution for this equation, we have

=X I

P(x) = — and Q(x) = -

\ X
Such type of equation comes in Schrodinger's equation for Hydrogen atom in spherical polar coordmate.

Applications of Laguerre’s functions
A spectral method of inverting one- and two-dimensional semi-infinie comvolutions usimg the

Laguerre polynomials. Applymg the Laguerre polynonials makes it possible to elimmate the diserenzanon
pl'{)t.‘:tlhll'c, Wllith nay take the Hl)lllllﬂl‘] ol lhl: |1L‘I‘lll|‘|1'..‘ll L‘L]llilliull uut:-:illc 1l\;_' l"cumn ulh udl-pu_\cdngﬁg

{7].Tcmpcrcd fracdonal digfysfon cquations (TEFDEs) mvolving tempered fractional devvatives on the whole

space [8).
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points and possibility of the series solution for t

Applications of Hermite’s functions
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3. Hermite cquation:
Hermit's differential equation s
d? d
—=2Z24+22y=0 (5
Where n :

IS positive integer. Solution of this cquation is known as Legendre Function [4]. In order to find out singular

his equation, we have
P(x) = —2x and Q(x) = 2n

—

Harmonic oscillator problem in quantum mechanics can be solved by using Hermite polynomials. The

problem is usual: to find all values of energiesE for which such a non-trivial solution exists. The physical meaning of

cigenvalues E; is the energy levels, and cigenfunctions v are the “wave functions” which describe the state of the
system [9]. The Landau levels, appearingin the quantum analysis of an electron (or any charged particle) moving In
aclassical magnetic field. Morse potential used to treat the dynamicalbehavior of diatomic molecules and its

approximation in terms of harmonicoscillator potential. [10]
4. Bessel functions:

Bessel's differential equation is

dy dy
2 2 2 —
- - [ - dxn - dx - ( )y
where n is an integer or a half integer. Solution of this equation 1s known as Bessel function [4].In order to find out
singular points and possibility of the series solution for this cquation, we have

A

)

Pix) = '1; and Q(x) = 1- —

x 2

Applications of Bessel functions

Bessel's equation anses when finding separable solutions to Laplace's equation and the Helmholtz equation 1n
cylindrical or spherical coordinates. Bessel functions are therefore especially important for many problems of wave
propagation and static potentials. In solving problems in cylindrical coordinate systems, one obtains Bessel functions of
integer order (= n); in spherical problems, one obtains half-integer orders («= n + |.f. |1 1]For example:

e LElectromagnetic waves in a cylindrical waveguide
e Hcat conduction in a cylindrical object
o  Diffusion problems on a lattice

Solutions to the radial Schrodinger equation (in spherical and cylindrical coordinates) for a free particle
1. DISCUSSION

In many arcas of applied mathematics, physics and chemistry in physical situation with a spherical geometry,

determination of wave tunctions of electrons in the erbits of an atom. These functions are developed only for special
cascs of equations. So that thg nyfpegAvhere v

which may _take the solu
; ol
polynomials. I%css%
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ABSTRACT : '

In the present paper, I would like to discuss about variation of damping length and ‘f’f’ "3[{5’”5’ hin tl ’j
region of 1.OSRQ® to 1.35R® and in different cases like (i) Magnetic diffusivity only (ii) viscosity only a;l
(iii) when both are present. It shows that Comparison of the fast and slow modes explicitly shows that the

' - — - the slow-
damping length as well as the wavelength for the fast-mode waves is much larger than those fo!
mode waves. _

INTRODUCTION: | .

The role of magnetohydrodynamics (MHD) waves has been discussed extensively in solar physics _for
understanding the outstanding problems of solar coronal heating and the Sol_ar wind
accelerationMechanisms[1]. For derivation of dispersion relation we have to consider following MHD
equation

oV l

p_+p(V.V)V=——(VXB)XB+va2V (1)
Ot 17,

B o Vx(vxB)+7VB 2)

Ot

V.B=0 (3)

The equations (1), (2) and (3) are known as momentum equation, Induction equation and Magnetic
flux conservation equation respectively. Where v is the velocity, B the magnetic field and p, p,n, V are,
respectively, the mass density, Magnetic permeability, magnetic diffusivity and the coefticient of viscosity.

Taking the perturbations from the equilibrium (Priest [2]) and linearize the equations (1) through (3)
by neglecting squares and products of the small quantities. After solving above equations we get a dispersion

relation as follows

2

w° =k [v_,z, —iwlv+ ?;)j-i— vk (4)

Where V, = By/(sqrt{ups)) is the Alfven velocity. The dispersion relation was obtained by Pekunu et
al. [3] &Kumthekar [4] . This dispersion relation is apphed for the plasma in the North Polar Coronal Hole
where assumed the angular frequency o to be a real quantity and the wave number &k as a complex quantity.

RESULT AND DISCUSSION:
For a given valuc of @ = 2n/t and the physical paramcters discusg
with the help of a FORTRAN program. [ assumed the aggular trequ

m the Kumthekar [3] and solved
AMCY w to be a real quantity and thewave

= —
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Omplex quanity so that & = 4y iki. When both the krand kiarc p

t r " 5
th 1 and (he wavelengihh of the wave as Chandra ¢l al. [5]

Tmping leng

L 1= 24
= an =T

_— EqQuation (4) 15 g simple
Hation can be studie
present.

ation. This
ting roots of cquation. I'h

qQuadratic cquation it can be solved for g€ and (iii) when both are

d for three cases (i) Magnetic diffusivity only (ii) viscosity only

Case I+ 1. i
e 1t Magnetie diffusivity:
Let us consider

, = 0). For this
Case, equation (4)

= b - . [} 3 . # - L * | 4 - ._‘ . ‘ l
‘der the case of magnetic diffusivity only. That is, there is no viscosity (
O "CS § b -2 rr LI 2
gves hrand kivalues, Then we can apply a condition w K vj . We gCl

W w>
Ky = — and k= —

Far the Th‘lls.’ e have two roots; one with positive values of kr and ki, and the other with the negative values.
or the positive v

o
| * =108,
102 s and 10~ alues, the damping length D and wavelength ) are calculate as a function of R,'for T h 1] -
than ﬂt 1410 " s and are given in Fig.1 (a). As from the expressions, here the damping length 1S muc ﬂlb] i
A que]cngth_ While D shows a large variation, with a maximum around 1.2R®, the 2 remains ncarly
constant. Fig. | ( ,

‘ > th ' - * s ionalto
2 ') shows that the wavelength is proportional to T whereas the damping length 1s proportio

Case II: Viscosity only:

Letﬁ us consider the case of viscosity only. That is, there is no magnetic diffusivity (n = 0). For this
C4S€, cquation (4) gives krand kivalues. Then we can apply a condition wv > vj , we get

Ky = %andki = %

Again, we have two roots: one with positive values of kr and ki, and the other with the negative
values. For the positive values, the damping length D and wavelength A are calculate as a function of R, for 1

P, ) . L b
=107s, 107 sand 107*s and are eiven in Fig.1 (b).
As trom the ex ressions, as long as wu » vi. the dampine leneth and the waveleneth are equal to
‘ . O A" } (- T 4 et 9
cach other. - There is a maximum around 1.2R O. Itisthe case fort= 10" sand 10" s. But. for t= 10" s. the

D and 2 differ slightly from each other. showing that the condition wu > v5 is not satistied here. There is a
maximum around 1.2R .

Case HHI: Both are Present v£0 and n #0.

Equation (4) i1s a quadratic cquation in k2 and therefore, its roots are of the form of two pairs: £(krl
+1ki1) and £(kr2 +iki2). These two pairs tor the roots correspond to the fast-mode and slow-mode waves. The
dampmg length D and wavelength 2 for the two modes as a function of R fort=107s. 107 s and 10~ s are
shown in Fig. 2. It 1s interesting to note that the variationof D and X for the fast-mode wave is similar to that
for the case of n = 0. Theslow-mode wave shows an opposite behaviour for the variation of D as well as A
There 1s a minimum around /.2R).Here, also, D 1s nearly equal to XMfor t= 10" s and 10™ 5. But. for 1 =
10"s . the D and A differ slightly fromeach other. Comparison of the fast and slow modes exphcitly shows
that the damping length as well as the wavelength for the fast-mode waves is much larger than those for the
slow-mode wave. Thus, the slow-mode waves cannot propagate through the corona.
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Fig. 1:Variation of damping length D and the wavelength 2 as tfunction of R for
t=10"s, 10" s and 107" s for two cases v=0 and n =0.
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